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Abstract

In this paper, we propose a parallel distributed processing
system for data-analytic project including human activity
sensing flows, which manages dependency among data
and analytic programs, and re-execute updated programs
and dependent programs for updated data/programs. In
the system, a data analyzer can specify the dependency
and parts for requiring distributed parallel processing using
Hadoop Streaming, and they can be processed only for
updated and the dependent part, with flexibly selecting
parallel or sequential execution on the fly. The
specification can also specify repeated execution of a
single program with different data, while their
dependencies are checked separately at execution. We
describe the mathematical model, the system design, the
usage, and the experimental result applying to the
essential process in human activity sensing.
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Introduction

Human activity sensing is increasingly researched as
mobile sensing becomes familiar with the spread of mobile
sensors such as smart phones. We think that human
activity sensing will be needed high accuracy and
universality. To do this, it is necessary to add data,
update, and will improve the analysis program. Therefore,
the amount of data to be processed becomes large, and
the program will change. In human activity sensing, a
large-scale data will be analyzed with several dependent
steps, which includes time synchronization, time-window
extraction, feature vector calculation, and machine
learning. To achieve high accuracy as well as universality,
the training data should be large enough, and the analysis
programs should be modified and improved frequently.
We call a project to analyze such large-scale data with
various numeric and statistical method data analytic
project. In a data-analytic project, the process to analyze
data has several stages, and each of them often generates
intermediate data and/or files.

At the same time, a data-analytic project often has
modifications to programs for analysis, or addition of data
files. In such a case, we need to re-execute the analytic
programs. However, the data including intermediate data
and analytic programs have dependencies among them as
for the order of execution. If we could organize such
dependencies and only re-execute the minimum part of
the analytic process satisfying the dependencies, we can
reduce the total time of the data-analytic project, since
the program-execution time is not negligible in
big-data-analytic projects.

In this paper, we propose a processing system for
data-analytic programs in which the dependencies among
programs and data are managed, and only the programs
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which needs to be re-executed upon the dependencies are
executed. Moreover, the system can be executed on
parallel and distributed system with Hadoop Streaming|3].

The proposed system has the following features:

1. An analyst describes the dependencies among
analytic programs and data on the configuration file
named " Dakefile". Dakefile can also specify the part
of processing to be executed parallel processing
using Hadoop Streaming.

2. When the analyst execute the programs, s/he can
select whether to force execute whole programs or
only to execute obsolete/unexecuted programs from
the view point of the dependencies.

3. Dakefile can also describe a program to be applied
to multiple data files repeatedly. When a new data
file is added, the program can only run for the new
data file without repeating from the first data file
which has been already run.

4. The analyst can also choose whether the execution
is done in serial or in parallel when they execute
Dakefile. For example, s/he can execute serially for
while the data size is small, and change to parallel
when it becomes larger.

5. The system provides supplemental functionality to
execute only mapper or reducer part in Hadoop, and
provides libraries for /0 of statistical analysis
program R[2].

Thus, the system enables human activity sensing research
to be scalable for large-scale data, and flexible for frequent
modification and flexible execution of analysis programs.
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In this paper, we describe the mathematical model, the
system design, the usage, and the experimental result
applying to the essential process in human activity sensing.

Related Work

In this section, we introduce some existing systems and
point out the challenges for data-analytic projects.

Make system [1] is a popular tool to manage the build of
software. In a compiler program language, multiple source
files need to be compiled, and the processing has several
stages. However, in the software development, some of
the source files are changed and rebuild occurs frequently.
Make system is able to detect and re-execute only the
compiling which is dependent to the changed files. It
means that the differential compilation is possible.

In data-analytic projects, the function of Make is also
useful. However, it is also necessary to understand the
dependencies among the subjects (programs) of
processing. For example, Make system is not intended
thet gcc compiler itself is modified and re-compiled. An
analysis program, which corresponds to the compiler, is
modified frequently in data-analytic project, so it is
necessary to understand such dependencies. Moreover, an
analytic program may also be applied repeatedly for
different data. For example, it is the case that the same
process is repeated for a multiple sensor data files which
are added daily. It is difficult to apply Make system to
specify such repeated processes in a united manner.
Although it is possible to describe the process for each file
extension in Make system, it is not possible to identify the
processing content only by the extension in data-analytic
project. In addition, Make does not have parallel and
distributed processing feature by default, and is
insufficient in the project of large-scale data analysis.
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MapReduce is a concept that has been simplified for
parallel distributed processing, which consists of three
phases: Map, Shuffle, and Reduce. The Map phase takes
input records and produces output of (key,value)

pairs. This is followed by a shuffle phase that groups the
(key,value) pairs by common values of the key, and finally
a reduce phase takes all pairs for a given key and produces
a new value for the same key. A developer solves problems
automatically by only simply programming the Map and
Reduce processing. MapReduce manages data placement
and task scheduling for parallel distributed processing.

Hadoop Streaming [4] is to provide a MapReduce using
the standard 1/0O of the UNIX shell. It allows users to
write Map and Reduce processing in a language other
than Java. In other words, If the user uses the standard
I/O, MapReduce can be implemented in any language. In
Hadoop Streaming, a Map program writes to standard
output a single line separated value and key of each data
item by a tab character. Moreover, a Reduce program
read from the standard input in the same format. The
result is a text which is output of Reduce sorted by the
keys.

In this paper, we realize to describe the dependencies
mentioned above and to realize differential processing with
Hadoop Streaming. By this, the efficiency of data analytic
project with large-scale is expected . In addition, the
analyst can choose whether the execution is done in serial
or in parallel before executing. The throughput of Hadoop
is known to be high, but when the data size is small, the
response time becomes slower than serial processing. If we
can choose to execute serial processing at runtime, flexible
parallel processing depending on the data size is possible.

There are several frameworks to support batch processing,
which repeats fixed patterns of executions to
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increasing/rotated data, such as Asakusa[5], Spring
Batch[6], Terasoluna[7], and Java Batch[8]. Among them,
Asakusal5] connects existing system and HDFS file system
in Hadoop, provides DSL (Domain-Specific Language) for
batch process based on Java language, and provides test
environments upon distributed environment. Although the
connecting functionality between existing and HDFS
filesystem is not provided in our system, our system has
another functionality of differential processing in which
only the dependent part is re-executed when parts of
programs are modified. And, our system has seamless and
dynamic transfer of execution between local and Hadoop
clusters.

Oozie[9] is similar to our system in the sense that it
defines a workflow of map/reduce processes. It represents
a workflow in DAG style using XML, and can execute
another meta-language such as Pig. However, it does not
focus on the functionality of differential processing and/or
local execution as our system.

Dependency Management System for Data-

analytic Projects

In this section, the data and analytic programs of
data-analytic project is formulated by a directed graph, so
we describe a system that can implement differential
processing. Using the formulation, we can describe the
dependencies, including the update status of analytic
program as well as data, and at run time, also can check
the dependencies individually while collectively define an
analytic program repeatedly. In addition, we realize to
execute only the unexecuted programs under the
formulated dependencies. Moreover, you can specify
which portion of the project is executed in parallel
distributed. An analyst can also choose whether the
execution is done in serial or in parallel at run time. It

provides supplemental functionality to execute only
mapper or reducer part in Hadoop, and also provides
libraries for 1/O of statistical analysis program R.

Formalization of data-analytic project

In this section, we formulate the description of the project
in order to clarify data-analytic project in this paper. Here,
the formulation must satisfy the following requirements.

e |t must represent the dependencies among the
subjects of processing, unlike the dependencies of
compilation such as the Make system. For example,
in Make, it is not necessary to manage the
dependencies of gcc compiler. However, since trials
and errors often occurs also for the processing
programs themselves, we need to manage these
dependencies in the data-analytic projects.

e The repetition of the analysis program is depending
on the case. It to do in serial or in parallel should be
treated flexibly. For example, When describing the
project, The same kind of analysis is summarized in
a single program.Then during execution, it is
required that only execute analytic program for
additional data .

Based on the requirements above, the analysis graph G is
defined to represent Data-analytic Project.

G:(P’D’I’O)

P is a set of Program Case, D is a set of Data, [ is a set
of input, and O is a set of output.

We define a set of programs corresponding to analytic
programs. R
P = {p17p27 e 7pﬁ}
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For example, if we take time windows for sensor data, and
assume a program that calculates moving averages O ={(p,d)lpe P,de D}
move_average and a program that calculates moving
s:candard deviations move_sd, then

In other words, the relationships between analytic program
P = {move_sd, move_sd}.

and input data are represented by I, and those between
the analytic program and output data are represented by
I. Let G have no loop, namely, for any u € P, there is no
path from a u to u other than the the path consisting of
only wu.

In fact, each of analytic program may run multiple times
for different input data. For example like above move_sd,
if it is performed for each data file datal.csv and
data2.csv, there needs to be distinguished between the
executions of the programs of two cases. Therefore, we

! Figure 1 shows an example of the formulation.
define program cases P as the following.

P = {pglap?y"' up?n}

Here, 1 <'iy,49, - ,1, < n, denotes which program in P _
j . Feature Calculation

the program case corresponds to. In other words, p; is a Program

running case of analytic program p;. Note that G is a

graph that contains a vertex p?. o ’H

Sensor Program Feature1 Learn  Estimation

The data of project is defined in the data set D. patat | Case 1 Model

Estimation
Result

Estimation Comparative  Accuracy

Q ﬂ 90 Evaluation
D = {d17 d2, e ’dm} Sensor | Program Feature 2 Legend:
Data2 Case 2
h / [:] : Program
Here, it includes intermediate data and final data, and is B - Program case
therefore necessary to be expressed flexibly when it is @ o

implemented so that the dynamically generated data can

Figure 1: Example of analysis graph G
be managed.

Between the elements of the data set D and the program
set P, a set of output edge is defined by O, and a set of
input edge is defined by 1.

I={(d,p)|d e D,p e P}
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The proposed system

Dakefile

,,,,,,,, : : Tracker Tracker

DakeAPI

Program
Class

Master Node Slave Node

Figure 2: System Components

System overview

Figure 2 shows the components of the system. The part
of Hadoop is the existing Hadoop Framework, and the
part of User and System are the newly developed by us.
The system has the following modules.

Dakefile Module: written by analysts, and the analytic
graph G is described in the Dakefile.rb file.

DakeAPIl Module: the module to define the grammar of
Dakefile module.

Dake Module: the main module in the system, interprets
the Dakefile defined by analyst based on DakeAPI,
and manage the object for analytic graph using the
Program module introduced below. In addition,
based on the command given by the command line
arguments, it executes the analysis programs.

Program Module: defines a object-oriented class, such
as the state variables and methods for each analytic
program in the analytic graph G.
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Default Mapper Module: a default mapper program
when the mapper program is omitted in parallel and
distributed processing in Dakefile.

Hadoop Streaming Module for R: functions to handle
standard input and standard output, When Hadoop
Streaming is used with the statistical analysis
software R.

These modules are written in Ruby language, where the
flexibility of Ruby is utilized, such as invocation of
dynamic method name or affinity for meta-programming.

We descripte each module in the following .

Dakefile

Dakefile described analytic graph G by users. it
corresponding to makefile. the following is format of
Dakefile.

Program "program name", ["program file name", ***] do |sources|
Data ["input file name", ***] => ["output file name", ***] do
(Processing Content)

or

Program "program name", ["program file name", ***] do |sourcesl|
Stream ["input file name", ***] => ["output file name", ***] do
Mapper '"mapper program file name" (, number of parallel execution)
Reducer "reducer "program file name" (, number of parallel execution)

Any of the above can be repeated.

In either case, "Program Name” specifies the elements of
the program set, and an array of " Program file name”
specifies the name of the program file that the program is
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used at runtime, which are used for checking dependency
when the program is running.

Also, if Data is specified, the array of "input file name”
means the name of input data file, and the of "output file
name” means the program cases. How to execute the
analytic program is written in the (processing contents) ,
and it uses the elements the array of " program file name”
here.

1

If Stream is specified instead of Data, "input file name”
and "output file name” are the same to above, and
"mapper program file" and "reducer program file" mean
to execute by parallel and distributed processing.
Moreover, you may also specify the number of parallel
execution in Mapper and Reducer. However, they can not
be always consistent when running in parallel, in which
case we suggest setting 1 as the number of parallel
execution .

In addition, since Dakefile is a Ruby program itself, it can
specify repeated definition of the analysis graph, such that
multiple program cases are generated for one program.
Thereby, it can treat repeats of analytic programs flexibly
either in individually or unitedly.

In the line of Program, |sources| means the array of all
input datafile which depends on this program, and it can
handle the newly created file in the preceding programs,
which can not be specified in the Dakefile otherwise.

Figure 1 is an example for a graph G, and the Dakefile is
as the following:
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Example of dakefile :

Program "Feature", ["Feature.rb"] do |sources|
Stream ["SensorDatal.csv", "SensorData2.csv"]=>["Featurel.csv", "Feature2.csv"'] do
Mapper "TimeWindow.rb", 1
Reducer "FeatureCalculation.rb"
end
end

Program "Learn", ["Learn.R"] do |sources|
Data ["Featurel.csv"] => ["EstimationModelData"] do
system("Learn.R") #call as system command.
end
end

Program "Estimation", ["Estimation.R"] do |sources|
Data ["EstimationModelData", "Feature2.csv"] => ["EstimationResultData"] do
system("Estimation.R")
end

#call as system command.

Program "comparative", ["comparative.rb"] do |sources|
Data ["EstimationResultData", "Feature2.csv"] => ["AccuracyEvaluationData"] do
system("compare.rb")

#call as system command.

In the example above, after feature calculation for
SensorData 1 and 2, the former is used for machine
learning, and the latter is used for the evaluation by
feeding into the generated model after machine learning.
Here, the part of feature calculation is using Hadoop
Streaming.

DakeAPIl module

The grammar of Dakefile is defined in DakeAPIl module,
and called from Dakefile, such as the methods of
Program, Data, Stream, Mapper, and Reducer.

Dake module

Dake Module is the main program in this system, it run
the analytic program based on the given command by
command-line arguments. The following is the format of
run command.

> dake.rb (COMMAND) (local)
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In the format, COMMAND is one of the options below:

e all (or empty): Only re-excute unexecuted program
by Described graph G in Dakefile. The dependent
program cases are executed first.

e alll: Regardless of whether or not latest, all
programs are executed.

e clean: remove any d in output edges (p,d) € O.
Namely, it removes all intermediate data and final
data in this project.

e (program name): you can enter the name defined in
Program or Stream in Dakefile. the program name
identifies the program node in the graph G, and the
node and its unexecuted ancestor are executed.

e (program name)!: force execute the program node
identified by the program name and its ancestors.

e (program)-map: Almost the same as above
(program name), but if Stream is written in parallel
distributed processing, only the mapper part which
is described by Mapper is executed.

In the format, local can be omitted. If local is specified,
the part is executed by local machine even if it is written
by Stream as parallel distributed processing. In other
words,the execution is done in serial on the master node.
When local is specified for Stream, the input data are
downloaded to the localhost first, serially executed locally,
and the results are uploaded to the Hadoop file system
(HDFS).
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Other modules

Other than the Dakefile module, DakeAPl module, and
Dake module described above, we modules to implement
the objects to define the properties and behaviors of
programs and program cases. Among them, Program
class is the class to define each program case, in which
the properties of each program case such as related
program/data files and dependent program cases, and
methods to be called when the program case is executed.
Moreover, Stream class inherits Program class, and plays
a role to be MapReduce program, which has properties to
designate mapper program and reducer program in
MapReduce architecture. Of course, Program class and
Stream class have both methods to execute checking
obsoleteness, and to force execute the program cases.

The system also provides supportive modules, such as
DefaultMapper module which defines the default mapper
program which divides the data by space and generates
key and value data. Also, the system provides modules for
default I/O functions for statistic software R, in which key
and value data as standard input are converted to a data
frame format in R, and a data frame object is output to
standard output with the column named 'key’ being key
values.

Evaluation

In this chapter, we evaluate Dake system. We evaluate
the following two points which are addressed as the
features of Dake system in Section 1.

3. Dakefile can also describe a program to be applied
to multiple data files repeatedly, and the program
can only run for the new data when a new data file
is added.
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4. The analyst can also choose whether the execution
is done in serial or in parallel.

For evaluation, we use a time synchronization program, as
an essential process in human activity sensing. Time
synchronization program is a program that performs time
synchronization between the sensor device when using
multi sensor devices. The program performs time
synchronization among several sensor data files by taking
cross-correlations of Intensity data obtained from the
three-axis acceleration data. This time, we used a
three-axis acceleration data from the sensor device
attached at four locations of, waist, wrists. We show the
analytic graph of the synchronization program in Fig. 3
.Time synchronization in Fig. 3 can be carried out before
the behavior recognition of Fig. 1 .

TimeSyncProgram

( 1
: gtrgata
Strength trData Correlation
- >(StrData -
Processing . Processing

Figure 3: The analytic graph of the synchronization program

Differential processing

The evaluation of the difference differential processing
performed from two perspectives. One is the case when
files to be processed added. The other is the case where
when a program to be processed has been modified.

For the first perspective, in the step of calculating
intensity of 3-axis acceleration data, we measured the
processing time while adding data for both of naive
method and the proposed method. The used data is
three-axis acceleration data of about 100 seconds, which
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are saved in a single file by 20Hz sampling rate. The
number of folder is one in the initial state, and increased
as one, five, ten, and twenty. Each file size is about 60
kilo-byte. The network was the 1GB Ethernet.

Since we want to know the processing time of differential
processing, we utilize serial processing instead of Hadoop
Streaming.The results are shown in Fig. 4 .

-
e

80 ~&— differential processing
—#—=nomal
. /

e
“-7

-4 1 6 11 16 21

Time(s)

Number of files

Figure 4: comparison of normal and differential processing

From Fig. 4, we can see that the processing time is
proportional to the number of files. If we use differential
processing, we may process only the additional data.
Thus, the increase in processing time is reduced, and the
slope of the graph becomes flatter. Therefore, the more
the number of files increases, the more differential
processing becomes effective. Ideally, the slope of
differential processing should be horizontal. The reason
why it still has a slope is due to the overhead scanning all
the files in our system.

Thus, the proposed system can be effective for the case
where certain amount of data is added periodically.
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For the other perspective, we consider the case where a
program is updated. In such a case, processing time is
determined by how much programs depend on the
modified program. If it is small, can be expected to
improve the processing time.

Local execution

In data analysis projects, it is often important to perform
debugging and/or measuring the performance of the
program. Using whole data for these purpose is not
appropriate, because the processing time becomes long.
Therefore, we provide a method to process only for the
part of them locally in serial.

When performing local execution, the proposed system
needs to transfer the data from HDFS to the local host.
Including this overhead, we evaluated the time of local
execution. We compared the time of data transfer and
execution of the time synchronization program. The
condition was the same as the evaluation of differential
processing. The time of program execution was calculated
by subtracting the transfer time from the actual execution
time. The result is shown in Tab. 1.

Table 1: Processing time of the program and the data transfer
time

Additional file File transfer time Processing time

0 0.751 34.252
1 0.818 58.795
5 0.932 167.295
10 1.217 307.068
20 1.57 586.845

From the table, compared with the times of program
executions, the data transfer is negligible in this case.
This time, we used 10 files of about 60 kilo-byte for each
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folder. We processing time of the actual program, it is not
important the data transfer time. Data that has been
dealing this time, is a ten files of one file about 60KB. For
such file data sizes, we do not need to consider the
transfer time.

On the other hand, when the sizes of files are much
larger, or when the execution times of programs are much
smaller, the transfer time should be taken into account.
To reduce such overhead is one of the challenges for the
future.

Conclusion

The proposed system can make human activity recognition
research more scalable, effective, and flexible for
large-scale sensor data and frequently updating programs.

In this paper, we proposed the dependency management
system for data-analytic projects, in which dependencies
among data and analytic programs are managed, only the
necessary programs are executed under the dependency,
and a user can selectively adopt parallel and distributed
processing with Hadoop Streaming dynamically.

The future work is to optimize scheduling of program
executions. And, when the sizes of files are much larger,
or when the execution times of programs are much
smaller, the transfer time should be taken into account.
To reduce such overhead is improve our system.
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