
Evaluating Impact of Storage
on Smartphone Energy Efficiency

David T. Nguyen
College of William and Mary

Williamsburg, VA 23185, USA

dnguyen@cs.wm.edu

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s). Copyright is held by the author/owner(s).
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
ACM 978-1-4503-2215-7/13/09.

http://dx.doi.org/10.1145/2494091.2501083

Abstract
We present an experimental study of how storage
techniques impact energy consumption in smartphones.
We design and implement a system that tracks I/O
activities of smartphones in real-time and dynamically
changes storage configuration by matching I/O patterns
in order to reduce energy consumption. Our system is
evaluated on the 20 most popular applications from
Android Market, and our results show that the optimal
configurations save from 21% to 52% of battery life. We
believe that they highlight a new and interesting direction
in which the topic of smartphone energy consumption can
be further evaluated and expanded upon.

Author Keywords
Dynamic storage configuration; I/O optimization;
Smartphone energy-efficient system

ACM Classification Keywords
C.4 [Performance of Systems]: Design studies; C.5.3
[Computer System Implementation]: Microcomputers

General Terms
Design; Experimentation; Measurement; Performance

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

319

Introduction
A common complaint among smartphone owners is the
poor battery life. To many users, being required to charge
the smartphone after a single day of moderate usage is
unacceptable. This fact demonstrates the necessity for
solutions which address the issue of energy consumption
in smartphone devices. Therefore, we are motivated to
investigate the direct impact of smartphone storage
techniques on total battery consumption. The key
research questions are: How does storage affect
smartphone energy efficiency?, What are the root
reasons?, and How can we optimize smartphone storage in
order to save more energy?

In order to answer the research questions, we plan to
evaluate smartphone power efficiency at various layers of
the I/O path, and provide evidence which highlights that
the energy consumption of a smartphone can differ
depending on storage techniques employed. Different
scheduling algorithms on the block layer or different queue
lengths on the device driver may impact the total energy
consumption differently. Our pilot solution finds for
benchmarks the combinations of scheduling algorithms
and queue lengths with optimal energy savings. The
system prototype implemented on the Android platform
tracks smartphone’s I/O pattern in run-time, and matches
with the benchmark with closest I/O pattern. After
having matched with a benchmark, the system
dynamically configures an optimal storage configuration to
achieve lower energy consumption.

Thesis Statement
We summarize our thesis statement as follows:

• Investigate the impact of storage on smartphone
energy efficiency.

• Explain root reasons of such impact.
• Develop storage-aware energy saving solutions.

Expected Contributions
If we succeed, we will contribute to a better
understanding of the limitations of current day and future
smartphone devices, i.e., how and why such devices
exhibit significantly different energy efficiency when
different storage policies are configured in the I/O path
and what device and system improvements are necessary.
We will also contribute specific innovative storage-aware
energy saving solutions that work well in practice. New
models and machine learning classifiers will be derived
from actual measurement in a wide variety of setting and
then used to remove or mitigate potential performance
impact of storage-aware energy saving solutions.

Related Work
Kim et al. [6] present the analysis of storage performance
on Android smartphones and external flash storage
devices. Their discovery of a strong correlation between
storage and application performance degradation serves as
motivation for our work. Carroll et al. [5] measure the
breakdown of energy consumption by the main hardware
components in the device. Their direct measurements of
each component’s current and voltage are used to
calculate power. This is done on a smartphone used for
scientific purposes only, and many experiments cannot be
replicated on commercially available smartphones. We
take a different approach based on the precise analysis of
the I/O activities between the application layer and the
flash storage. Pathak et al. [8] introduce an application
profiling approach in which they propose a system
mapping energy activities to program entities based on
estimates of routines’ running time. The work, however, is
done only on the application level.

Background and Motivation
In this section, we introduce background and motivation
of our work. Next, we explain the measurement and

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

320

methodology. Afterwards, we proceed with the
measurement on the block layer and device driver.

I/O Path Components
In this work we take a look at energy efficiency of various
storage techniques applied at several main components
such as the block layer and device driver. In particular,
our focus is to investigate the impact of different storage
configurations on power level in smartphones. We
illustrate the main kernel components affected by a block
device operation on the I/O path in Figure 1. The figure
is adapted from the literature [3]. At the block layer, the

Figure 1: I/O Path.
main work is scheduling I/O requests from above and
sending them down to the device driver. The Linux kernels
on Android smartphones offer 4 scheduling algorithms:
BFQ, CFQ, Deadline, and Noop. In some Android phones,
the default fixed scheduling algorithm is BFQ (e.g., Nexus
One), others use CFQ (e.g., Galaxy Nexus, Nexus S). The
device driver gets requests from the block layer, and
processes them before sending back a notification to the
block layer. On the device driver, we are interested in a
parameter called queue depth that is defined as the
number of pending I/O requests for storage. The queue
depth is fixed to different values depending on vendors,
usually 128 (e.g., Galaxy Nexus or Nexus One).

Benchmarks
We run 8 popular benchmarks on the Nexus One phone
with Android platform under different storage
configurations and measure power consumption levels
with the Monsoon Power Monitor [2] (details given in
Performance Evaluation). Each benchmark tests different
phone subsystems and has its specific I/O pattern.

Block Layer
The default file system, scheduling algorithm, queue
depth, and caching policy for the Nexus One is YAFFS2,

BFQ, 128, and write-back, respectively. Each benchmark
is executed on the phone for each scheduling algorithm
and the power level is measured. The parameters are fixed
to the default values, including the queue depth 128 and
write-back caching policy. The results are illustrated in
Figure 2. The first observation says that for the same
benchmark, different scheduling algorithms result in
different power levels. For instance, the AnTuTu (1st
benchmark) average power consumption level is 792mW
with CFQ, 720mW with Deadline, 792mW with Noop,
and 1080mW with the default BFQ. Another observation
is that none of the scheduling algorithms is optimal for all
benchmarks. However, it is possible to find the optimal
scheduling algorithm(s) for each benchmark and save
relatively a lot of energy. For example, AnTuTu
benchmark has the optimal power consumption with the
Deadline algorithm, and more than 33% of energy on
average can be saved compared to the default
configuration with BFQ.

BFQ CFQ Deadline Noop
0

200

400

600

800

1000

1200

P
o

w
e
r

(m
W

)

AnTuTu

CF−Bench

GLBench

BrowserM

AndroB

Quadrant

SmartB

Vellamo

Figure 2: Power for Default Configurations.

Device Driver
To investigate impact of the device driver level on energy
consumption, we run the benchmarks with different queue
depths and compare how different queue depths affect

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

321

power levels. On Nexus One phone, the default queue
depth is 128. The power consumption of this default
queue depth is already illustrated in the previous Figure 2.
Therefore, we investigate the power levels of the depth 4
in this section and compare with previous measurements.
Figure 3 shows the power levels for the depth 4
normalized to the consumptions with depth 128. Looking
at AnTuTu, with BFQ and queue depth 4 (BFQ/4) the
average power consumption is 720mW which corresponds
to 66.7% of the default BFQ/128 consumption. That
means by changing the queue depth to 4, the phone can
save on average 33.3% energy.

BFQ/4 CFQ/4 Deadline/4 Noop/4
0

20

40

60

80

100

120

140

P
o

w
e
r

(i
n

 %
)

AnTuTu

CF−Bench

GLBench

BrowserM

AndroB

Quadrant

SmartB

Vellamo

Figure 3: Power for Queue Depth 4.

Figure 4: Architecture. Optimal Consumption
In order to find optimal power consumption for all
benchmarks with above knowledge, we run for each
benchmark all 8 possible combinations of scheduling
algorithms (BFQ, CFQ, Deadline, Noop) with queue
depths (128, 4) researched. This is recorded in a
benchmark table.

Pilot Solution
In this section, we present a system prototype named
SmartStorage [7]. From previous sections, for each

benchmark there exists a combination of a scheduling
algorithm and queue depth that is most power efficient.
This information can be reused. First, we investigate the
I/O pattern of each benchmark. Next, we obtain a
run-time I/O pattern from the phone and match it to a
benchmark with the most similar I/O pattern. Finally, an
optimal combination of a scheduling algorithm and queue
depth is configured. We discuss details in the following
subsections.

The architecture in Figure 4 is divided into kernel space
and user space. Kernel space consists of two main
modules: SmartStorage Core and Benchmark I/O
Patterns. User space includes the graphics user interface
(GUI) and Tools for Advanced Users. Following, we
elaborate detailed functionalities.

SmartStorage Core has three main functionalities. First,
it obtains phone’s run-time I/O pattern. Next, it gets a
combination of a scheduling algorithm and queue depth
with optimal power efficiency. Finally, it configures this
combination in the block layer scheduler and the device
driver of corresponding flash partitions.

The phone’s run-time I/O pattern is obtained via blktrace
[1, 4]. After gathering I/Os for a predefined time period,
it calculates the run-time I/O pattern that is later used for
matching with benchmark patterns. The pattern consists
of rates of each I/O type per second. Note that such a
pattern characterizes the I/Os of the whole phone,
including those originating from background services.
Therefore, this approach is not application-dependent.

Matching is done in the second phase after acquiring the
phone’s run-time I/O pattern. The phone’s pattern is
matched to a benchmark with the most similar I/O
pattern. Since each benchmark has a combination of a

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

322

scheduling algorithm and queue depth with optimal
consumption, that combination is returned as a result of
this phase. With power efficiency in mind, we want a
computationally inexpensive matching approach that is at
the same time precise. Having all types of I/Os coming to
storage, simple intuition says that what matters most at
the end are the total number of completed reads and
number of completed writes in a given interval.
Furthermore, it is necessary to take into consideration
differences between characteristics of read and write I/Os.
Some partitions will serve reads better than writes or vice
versa. Some partitions will be read-only, other allow both
read and write. Motivated by this, we decide to expand
the simple intuition, and do the matching based on the
proportions of rates of completed reads and completed
writes.

For clarity, let us define RCRate as number of reads
completed per second. and WCRate as number of writes
completed per second. Further, let us define Rate
Proportion (RP) as RP = RCRate / WCRate. If the Rate
Proportion (RP) of the phone’s I/O pattern is close to the
RP of a benchmark, a match is found. Finally, the optimal
scheduling algorithm is set in the block layer scheduler
and the optimal queue depth is set in the device driver.

Performance Evaluation
This section evaluates the SmartStorage efficiency by
comparing energy usage of the 20 most popular
applications from the Android Market with and without
SmartStorage.

In our experiments, we use the SmartStorage
implementation in the Nexus One phone. To measure
energy consumption, the Monsoon Power Monitor [2] is
utilized. We run the experiments with the top 20 free

applications from the Android Market as of August 7,
2012. During our experiments, all radio communication is
disabled except for WiFi. The screen is set to stay awake
mode with constant brightness and auto-rotate screen off.
When SmartStorage is in use, it runs only in the
background and its GUI is off.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

G
m

ail
Y

ouT
ube

Facebook
L

ookoutSecurity

G
oogleM

aps

T
w

itter
T

inyFlashlightL
E

D

Y
elp

A
m

azonM
P3

T
angoV

ideoC
alls

T
em

pleR
un

W
hatsA

ppM
essenger

A
dobeFlashPlayer

Instagram
G

ooglePlayB
ooks

PandoraInternetR
adio

C
olorN

oteN
otepadN

otes

A
m

azonM
obile

G
oSM

SPro

V
oiceSearch

N
e

x
u

s
 1

 E
n

e
rg

y
 S

a
v

in
g

s
 (

%
)

Figure 5: Energy Savings on Nexus One.

In order to address how much energy our solution saves in
a typical use case, we run each of the 20 applications
mentioned with SmartStorage in the background and
compare with the case when the application is running
with the default scheduling algorithm and queue depth
(BFQ/128). A typical use case varies for applications. For
instance, for Gmail, we read 20 emails and write 10
emails; for Amazon Mobile, we search for 20 products and
read information about them; in Pandora, we listen to a
channel for 30 minutes; on YouTube we search and listen
to 5 songs; on Facebook, we read and write posts, etc.
The Android Monkey tool is utilized to allow repeating the
same behavior more times with and without SmartStorage
so as to ensure fairness. The results of the total savings
are in Figure 5. We can observe that the energy savings

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

323

vary from 23% to 52% and the largest savings are with
Pandora application (52%). The three applications with
no energy values have the optimal configuration identical
to the default parameters of the phone.

Remaining Steps
In the device driver layer, we benchmarked the phone with
two different queue depths and found significant
differences in energy consumption. Naturally, more
research on combining queue depths and scheduling
algorithms may yield higher savings. We proposed the RP
metric that proved to be efficient at matching I/O
patterns. However, we plan to research a machine learning
based method in the future. Our pilot solution periodically
measures the storage I/O and then matches the I/O
fingerprint to that of benchmarks for locating the optimal
storage policy to save energy. If this process happens too
frequently, the cost may be unnecessarily high and the
system may not be stable since application performance
may be impacted during highly frequent storage policy
transitions, which we also plan to evaluate. If such a
process happens too sparsely, we will not save much
energy. Hence, we plan to monitor application events such
as application started and terminated, and use them to
adapt the measurement and matching frequency.

The conventional wisdom is that storage contributes little
(approximately 30%) to the total power consumption [5].
In our simple proof-of-concept solution, with the dynamic
storage configurations, we are able to save from 21% to
52% of the total consumption. We attribute this to the
performance impact of the storage on other components
of the phone. We suspect that the interesting savings are
triggered by the changes in the storage, and further
propagated into other components in the phone. This
naturally raises a question, how storage affects the

performance of different smartphone subsystems. Thus,
still more research needs to be done in this matter.

Acknowledgements
This work is supported in part by NSF grant
CNS-1250180. The author would like to thank Dr. Zhou,
William & Mary LENS research lab members, and
anonymous reviewers for their valuable comments.

Biographical Sketch
David Nguyen has been working on his Ph.D. in Computer
Science at the College of William and Mary since Fall
2011. He is advised by Dr. Gang Zhou, and his research
interests are wireless networking and smartphone storage.

References
[1] Block i/o layer tracing: blktrace.

http://linux.die.net/man/8/blktrace, 2012.
[2] Monsoon power monitor. http://www.msoon.com,

2012.
[3] Bovet, D., and Cesati, M. Understanding the Linux

Kernel, Third Edition. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2005.

[4] Brunelle, A. D. blktrace User Guide. USA, 2007.
[5] Carroll, A., and Heiser, G. An analysis of power

consumption in a smartphone. In Proc. ATC 2010,
USENIX Assoc. (2010).

[6] Kim, H., Agrawal, N., and Ungureanu, C. Revisiting
storage for smartphones. In Proc. FAST 2012,
USENIX Assoc. (2012).

[7] Nguyen, D. T., Zhou, G., Qi, X., Peng, G., Zhao, J.,
Nguyen, T., and Le, D. Storage-aware smartphone
energy savings. In Proc. UbiComp 2013, ACM Press
(2013).

[8] Pathak, A., Hu, Y. C., and Zhang, M. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proc.
EuroSys 2012, ACM Press (2012).

Session: Doctoral School UbiComp’13, September 8–12, 2013, Zurich, Switzerland

324

	Introduction
	Thesis Statement
	Expected Contributions

	Related Work
	Background and Motivation
	I/O Path Components
	Benchmarks
	Block Layer
	Device Driver
	Optimal Consumption

	Pilot Solution
	Performance Evaluation
	Remaining Steps
	Acknowledgements
	Biographical Sketch
	References

